
Automation of Triangle Ruler-and-Compass Constructions

Using Constraint Solvers

Milan Banković1

Faculty of Mathematics, University of Belgrade, Serbia
milan.bankovic@matf.bg.ac.rs

Abstract

In this paper, we present an approach to automated solving of triangle ruler-and-
compass construction problems using finite-domain constraint solvers. The constraint
model is described in the MiniZinc modeling language, and is based on the automated
planning. The main benefit of using general constraint solvers for such purpose, instead
of developing dedicated tools, is that we can rely on the efficient search that is already
implemented within the solver, enabling us to focus on geometric aspects of the problem.
We may also use the solver’s built-in optimization capabilities to search for the shortest
possible constructions. We evaluate our approach on 74 solvable problems from the Wer-
nick’s list, and compare it to the dedicated triangle construction solver ArgoTriCS. The
results show that our approach is comparable to dedicated tools, while it requires much
less effort to implement. Also, our model often finds shorter constructions, thanks to the
optimization capabilities offered by the constraint solvers.

1 Introduction

One of the oldest and the most studied class of problems in geometry is the class of construction
problems: given some elements of a figure (such as a triangle), we want to find a sequence of
steps to construct the remaining elements of the figure using the available tools – typically a
ruler1 and a compass. The beauty of this class of problems is that each problem is different
and requires a specific, often very deep geometric knowledge to be solved. Moreover, many
problems are even proven to be unsolvable.

Although geometricians love to deal with such problems by hand, for computer scientists
(who also love geometry) it is tempting to try to automate the solving of construction problems.
From the algorithmic point of view, the construction problems are search problems, and the
search space is usually very large. There are two main lines of approaches here: one is to develop
a specific search algorithm in some programming language with required geometric knowledge
compiled into it, and the other is to use existing artificial intelligence tools that are good in
solving search problems in general. In the second case, one should only specify the problem
and its constraints using some input language and then leave the search to the tool.

In this paper, we advocate the second approach. More specifically, we show how finite-
domain constraint solvers [6] may be used for such purpose. We develop a constraint model in
the MiniZinc modeling language [4], based on the automated planning [2]. There are two main
benefits of using constraint solvers for this purpose:

� the constraint solvers are very efficient search engines, and by using them we may focus
on geometric aspects of the problem and on modeling the geometric knowledge required
for its solving, and leave the search to the tool that is good at it.

1A more accurate term would be straightedge, since a ruler is usually equipped with measuring marks, so it
can be used to measure length, which is typically not allowed in geometric constructions. Nevertheless, in this
paper we use the term ruler and consider it as a synonym for a straightedge.



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

� the constraint solvers are usually equipped with optimization capabilities, enabling us to
search for a construction that is the best in some sense (for instance, the shortest possible
construction may be required). This can be done with the minimal effort, compared to
developing specific search algorithms with optimization capabilities (such as branch-and-
bound algorithms).

We compare our approach to the state-of-the-art tool for automated generation of triangle
constructions ArgoTriCS [3], developed in the Prolog programming language. A detailed eval-
uation is performed on 74 solvable problems from the Wernick’s set of triangle construction
problems [7].

The rest of this paper is organized as follows. In Section 2, we introduce needed concepts
and notation used in the rest of this paper. In Section 3 we describe our constraint model.
Section 4 provides a detailed evaluation of the approach. Finally, in Section 5, we give some
conclusions and mention some directions of the further work.

2 Background

2.1 Ruler-and-Compass Constructions

In this paper, we consider ruler-and-compass triangle constructions, where the goal is to con-
struct all vertices of a triangle, assuming that some elements of the triangle (points, lines or
angles) are given in advance. A construction consists of a sequence of steps, where in each step
some new objects (points, lines, angles or circles) are constructed based on the objects con-
structed in previous steps. Constructions performed in each of the steps are usually elementary
ones, such as constructing the line passing through two given points, or the point that is the
intersection of two given lines, or the circle centered at a given point that contains another given
point. However, in order to simplify the description of a triangle construction, some higher-level
construction steps are also considered, such as constructing the tangents to a given circle from
a given point, or the line perpendicular or parallel to a given line and passing through a given
point, etc. Such higher-level constructions are called compound constructions, since they can
be easily decomposed into sequences of elementary construction steps.

In this paper, we focus on the Wernick’s list of triangle construction problems [7], where
the following set of 16 characteristic points of a triangle is considered: the triangle vertices (A,
B, C), the circumcenter O, the incenter I, the orthocenter H, the centroid G, the feet of the
altitudes (Ha, Hb, Hc), the feet of the internal angles bisectors (Ta, Tb, Tc) and the midpoints
of the triangle sides (Ma, Mb, Mc). Each problem from the list assumes that three different
points from this set are given, and the goal is to construct all the vertices of the triangle. There
are 560 such point triplets, but only 139 among them represent significantly different problems
(that is, mutually non-symmetric). Among these, only 74 problems are proven to be solvable
by a ruler and a compass (others either contain redundant points, or are undetermined, i.e. may
have infinitely many solutions, or are proven to be unsolvable). In our work, we consider only
these 74 solvable problems from the Wernick’s list.

In further text, we rely on the notation used by Marinković [3]. We also assume the geometric
knowledge presented in [3], as well as the set of elementary and compound construction steps
used in that work.

2



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

2.2 Constraint solving

In this work, we reduce triangle construction problems to constraint solving [6]. A finite-domain
constraint satisfaction problem (CSP) consists of a finite set of variables X = {x1, . . . , xn},
each taking values from its given finite domain Di = D(xi), and a finite set of constraints
C = {C1, . . . , Cm}, which are relations over subsets of these variables. A solution of a CSP is an
assignment (x1 = d1, . . . , xn = dn) of values to variables (di ∈ Di), such that all the constraints
of that CSP are satisfied. A CSP is satisfiable if it has at least one solution, otherwise is
unsatisfiable. The optimization version of CSP, known as a constrained optimization problem
(COP) additionally assumes a function f over the variables of the problem that should be
minimized (or maximized), with respect to the constraints from C.

Tools that implement procedures for solving CSPs (and COPs) are called constraint solvers.
They are usually based on a combination of a backtrack-based search and constraint propagation
[6]. Constraint solvers have been successfully used for solving many real-world problems in many
fields, such as scheduling, planning, timetabling, combinatorial design, and so on.

An important step in using constraint solvers is constraint modeling, that is, representing
a real-world problem in terms of variables and constraints. A constraint model is usually de-
scribed using an appropriate modeling language. One such language supported by many modern
constraint solvers is MiniZinc [4]. This language offers a very flexible high-level environment
for modeling different kinds of constraints, enabling a compact and elegant way to represent
some very complex problems. Examples of some high level language elements include tuples,
multi-dimensional arrays, sets, aggregate functions, finite quantification and so on. Since most
of these high level constructs are not supported by backend solvers, each MiniZinc model must
be translated into an equivalent FlatZinc form, containing only primitive language constructs
and constraints supported by a chosen backend solver. MiniZinc supports modeling of both
CSPs and COPs.

In MiniZinc, we distinguish variables from parameters. MiniZinc variables correspond to
the variables of a CSP, i.e. we declare their domains and expect from the solver to find their
values satisfying the constraints. On the other hand, parameters are just named constants,
and their values must be known when the model is translated to the FlatZinc form (i.e. before
the solving starts). Parameters are the language’s construct that allow us to specify a general
model for a class of problems, and then to choose a specific instance of the problem by fixing
the values of the model’s parameters. Parameter values are usually provided in separate files
(called data files), so that we can easily combine the same model with different data.

In our work, we use MiniZinc as a modeling language.

2.3 Automated planning

In our approach, triangle construction problems are considered as problems of automated plan-
ning [2]. An automated planning problem consists of the following:

� a set S of possible states, which are usually encoded by a set of variables V and the values
assigned to them. One distinguished state S0 ∈ S is the initial state.

� a set of operators O, where each operator o ∈ O consists of a precondition Co describing
the conditions (in terms of the variables from V) that must be satisfied in the current
state for the operator to be applied, and a set of effects Eo (represented as variable-value
assignments) describing how the current state is changed when o is applied to it. The
state obtained by applying an operator o to some state S is denoted by o(S).

3



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

� a goal G, describing the conditions (in terms of the variables from V) that must be satisfied
in the final state.

The objective of automated planning is to find a plan, that is, a finite sequence of operators
o1, . . . , on from O that can be successively applied to the initial state S0 (i.e. for each i ∈
{1, . . . , n}, we have Si = oi(Si−1), and the state Si−1 satisfies the precondition Coi) producing
the final state Sn satisfying the goal G. The number n of operators used in a plan is called the
length of the plan.

The problem of checking whether a plan (of any finite length) exists is PSPACE-complete
in general [1]. For a fixed plan length n, the problem is NP-complete in general, and can be
encoded as a CSP [2, 5].

The optimization variant of the planning problem (i.e. finding a plan of the minimal possible
length) can be solved by successively checking for existence of plans of lengths n = 1, 2, 3, . . .,
that is, by solving the corresponding sequence of CSPs until a satisfiable one is encountered.

3 Model Description

The triangle construction problems that we consider in this paper can be naturally described
as problems of automated planning:

� states correspond to the sets of constructed objects, and the initial state is the set con-
sisting of the given elements of the triangle (three points in case of Wernick’s problems).

� operators correspond to the construction steps; the precondition for each operator is that
objects used in the corresponding construction step are already constructed (i.e. belong to
the current state), and that corresponding non-degeneracy and determination conditions
are satisfied (e.g. two lines must be distinct and non-parallel in order to construct their
intersection); the effect of each operator is the addition of the objects constructed by the
corresponding construction step to the current state.

� the goal condition is that vertices A, B and C belong to the final state.

The corresponding planning problem for a fixed plan (construction) length is encoded as a
CSP using the MiniZinc language.2 In the rest of this section, we discuss different aspects of
the encoding in more detail.

3.1 Encoding of geometric knowledge

Encoding objects. We consider four types of objects: points, lines, circles and angles. Each
of these types is encoded as an enumeration type in MiniZinc (Point, Line, Circle and Angle,
respectively), and each object is represented by one enumerator of the corresponding type. The
enumerated objects are the only objects that can be constructed. This means that we have to
anticipate in advance the set of objects that might be needed during the construction.

Encoding relations. Different relations between the enumerated objects are encoded by the
parameters of the model, using MiniZinc’s arrays, sets and tuples. These relations are used to
statically encode the geometric knowledge used in the constructions. We define the following
types of relations:

2The model is available at: https://github.com/milanbankovic/constructions/.

4

https://github.com/milanbankovic/constructions/


Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

� incidence relations: we define two arrays of sets, inc lines and inc circles, indexed
by points. The set inc lines[p] contains the lines incident with the point p, and the set
inc circles[p] contains the circles incident with the point p.

� relations between lines: we define two arrays of sets, perp lines and paralell lines,
indexed by lines. The set perp lines[l] contains the lines perpendicular to the line l, and
the set parallel lines[l] contains the lines parallel to the line l.

� circle tangents, diameters and centers: the array of points circle center indexed by
circles contains information about circle centers; the array circle diameter of point pairs
indexed by circles contains information about circle diameters; the array tangent lines

of sets of lines is indexed by circles, and the set tangent lines[c] contains the lines that
are tangents of the circle c.

� vector ratios: we use the array known ratio triplets of point triplets to store the in-

formation about the triplets of collinear points (X,Y, Z) such that the ratio
−−→
XY /

−−→
Y Z is

known. The exact value of the ratio is not encoded, since it is not important for the search
(it is only important to know that we can construct one of the points if the remaining
two are already constructed). Similarly, we use the array known ratio quadruplets to

encode quadruplets of points (X,Y, Z,W ) such that the ratio
−−→
XY /

−−→
ZW is known.

� angles between the lines: we use the array angle defs of Line×Line×Angle triplets, to
encode the information about the angles between the lines. A triplet (p, q, ϕ) means that
the angle between the lines p and q is determined by ϕ (e.g. is equal to ϕ/2 or ϕ+ π/2).
Such information can be used in two directions: if we have constructed p and q, we can
construct the angle ϕ; also if we have constructed p and ϕ, and the intersection point X
of p and q, we can then construct the line q.

� perpendicular bisectors of segments: we use the array perp bisectors of Point×Point×
Line triplets to encode the information about the perpendicular bisectors of line segments.

� harmonic conjugates: we use the array harmonic quadruplets of point quadruplets,
where a quadruplet (X,Y ;Z,W ) encodes that the points X and Y are harmonic conju-
gates of each other with respect to the pair (Z,W ).

� loci of points: we use the array locus defs of Point × Point × Angle × Circle tuples,
where a tuple (X,Y, ϕ, c) encodes that the locus of points such that the segment XY is
seen at an angle determined by ϕ is an arc of the circle c.

� homothetic images of lines: we use the array homothety triplets of Point×Line×Line

triplets, where a triplet (X, p, q) encodes that the line q is the image of the line p by
homothety centered in the point X (again, homothety coefficient is not stored in the
database).

3.2 Encoding of the planning problem

Encoding of states. Let n be the length of a plan that we are searching for, let S0 be the
initial state, and let Si be the state after the ith step. To encode these states, we introduce
arrays of variable sets known points, known lines, known circles and known angles, where,
for instance, known points[i] (i ∈ {0, . . . , n}) denotes the set of points belonging to the state Si

(similarly for other arrays). The initial state S0 is fixed in advance by appropriate constraints
(for instance known points[0] = {A,G,O}).

5



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

Encoding the plan. We define the enumeration type ConsType, with one enumerator for
each supported type of construction step. We also define the array construct of variables
of type ConsType (with indices in {1, . . . , n}) encoding operators used in each step (i.e. the
construction step types). For each step, we also need additional information to fully determine
the actual construction (for instance, if we choose to construct the intersection of two lines,
we must also choose the lines that we want to intersect). For this reason, we also introduce
additional two-dimensional arrays of variables: for instance, points[i][j] denotes the jth point
used in the ith construction step (similarly we have lines[i][j], circles[i][j] and angles[i][j]).

Encoding the state transitions. Finally, to glue the whole plan together, we must add the
constraints that connect the state variables in the successive states, depending on the chosen
operator in the corresponding step. This must be done for each i ∈ {1, . . . , n}, and that is
where MiniZinc’s finite universal quantification comes in handy:

constraint forall(i in 1..n)

(

construct[i] = LineIntersect ->

% Precondition

(lines[i,1] in known_lines[i-1] /\

lines[i,2] in known_lines[i-1] /\

lines[i,1] != lines[i,2] /\

not (lines[i,1] in parallel_lines[lines[i,2]]) /\

lines[i,1] in inc_lines[points[i,1]] /\

lines[i,2] in inc_lines[points[i,1]] /\

not (points[i,1] in known_points[i-1]) /\

% Effects

known_points[i] = known_points[i-1] union { points[i,1] } /\

known_lines[i] = known_lines[i-1] /\

known_circles[i] = known_circles[i-1] /\

known_angles[i] = known_angles[i - 1]

)

);

That is, for all i ∈ {1, . . . , n}, if the chosen operator is LineIntersect (constructing the
intersection of two lines), then the chosen two lines lines[i, 1] and lines[i, 2] must belong to
the current state Si−1 (i.e. they must have been already constructed), they must be distinct
and not parallel. Also, the chosen point points[i, 1] must belong to both chosen lines (i.e. it
must be their intersection), and it must not belong to the current state (we do not want to
construct a point that is already constructed). If all these preconditions are met, then the
effect is that the set known points[i] is obtained by adding the intersection point points[i, 1]
to the set known points[i − 1] (the sets of lines, circles and angles remain the same). Similar
constraints are defined for all other types of construction steps.

Encoding the goal. The goal is encoded simply by adding the constraints that require that
the vertices A, B and C belong to the set known points[n]:

{ A, B, C } subset known_points[n];

6



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

4 Evaluation

The model described in the previous section is evaluated on 74 solvable instances fromWernick’s
set [7]. The experiments were performed on a computer with 3.1GHz processor and 8Gb
of RAM. We used official MiniZinc distribution3 for experiments (version 2.7.2). We have
experimented with different backend constraint solvers provided within MiniZinc distribution,
and by far the best results were obtained by the chuffed4 solver. Therefore, in the rest of this
section, we present only the results obtained by chuffed.

We looked for plans of minimal lengths (i.e. constructions with the minimal possible numbers
of steps). We used three different setups:

� linear setup: for each of the problems, we successively look for plans of length n =
1, 2, 3, . . ., and stop when we encounter a satisfiable CSP, or when some upper limit
maxSteps is exceeded. This is the usual way for finding plans of minimal lengths in
automated planning [5]. In our experiments, the upper limit for the plan length was set
to 11, since our preliminary experiments had shown that all the problems that our model
could solve had been solved in at most 11 steps. Note that in this setup the value of
maxSteps does not affect the solving time for problems that our model can solve (that
is, using a greater value of maxSteps would not slow down the search).

� minimization setup: we reformulate our model such that the plan length n is not fixed.
Instead, n is a variable with a domain {1, . . . ,maxSteps} and we are trying to minimize
the value of n (that is, we are solving a constrained optimization problem). The problem
with this approach is how to determine the value of maxSteps parameter, since in this
setup greater values of this parameter make the model larger and the search becomes
slower, even for problems that can be solved in a small number of steps. In our experi-
ments, we used the value maxSteps = 11, but this was somewhat artificial choice, since
we used the previous knowledge to choose the minimal possible number of steps sufficient
to solve all the problems that our model was able to solve.

� incremental setup: just like in the previous setup, we reformulate our model such that we
are trying to minimize n, but this time the domain for n is some interval {l, . . . , u}, where
l and u are parameters. Now we successively solve constrained optimization problems for
intervals {1, . . . , k}, {k + 1, . . . , 2k},{2k + 1, . . . , 3k},. . . , until some of them turns out to
be satisfiable, or until some upper limit maxSteps is exceeded. Like in the first setup, the
choice for the value of the parameter maxSteps does not affect the solving time for the
problems that are solvable by our model. On the other hand, the number of COPs solved
is smaller roughly by the factor k, compared to the first setup. We have experimented
with multiple choices for k, and the best results were obtained for k = 3.

In Table 1, we provide the main results of our evaluation. We have evaluated all three setups
described above. We also compared our approach to the results obtained by the ArgoTriCS
dedicated triangle construction solver developed by Marinković [3]. ArgoTriCS is implemented
in Prolog programming language, but it uses a very similar knowledge base and an almost
identical set of available construction steps.

Note that the choice of the setup does not affect how many problems from Wernick’s list
will be solved, since this depends only on the geometric knowledge that is compiled into our

3https://www.minizinc.org/software.html
4https://github.com/chuffed/chuffed

7

https://www.minizinc.org/software.html
https://github.com/chuffed/chuffed


Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

Setup # solved Avg. time Median time Avg. time on solved Avg. length
linear 63 97.9 22.0 58.5 6.3

minimization 63 43.8 10.8 29.7 6.3
incremental (k = 3) 63 66.1 12.0 39.9 6.3

ArgoTriCS 65 54.5 21.6 54.4 7.5

Table 1: Overall results for different setups, compared to ArgoTriCS. Times are given in seconds

model.5 In total, we managed to solve 63 of 74 problems (for the remaining 11 problems, the
constraint solver reported unsatisfiability). On the other hand, ArgoTriCS solved 2 problems
more. This is because we missed to incorporate some of the objects and lemmas known to
ArgoTriCS to our model.

The best average solving time is obtained by the minimization setup. However, as we
mentioned earlier, the average solving time in this setup greatly depends on the choice for the
maximal possible value of n. The results shown in Table 1 are obtained for maxSteps = 11.
We also experimented with some greater values. For instance, for maxSteps = 20 the average
solving time was over 100 seconds, that is, more than twice greater (of course, the number of
solved problems remained the same).

The linear setup has shown the worst performance. This is because in this setup we were
solving many unsatisfiable CSPs until we possibly reached some satisfiable CSP. Unsatisfiable
CSPs tend to consume more time, especially those that are “almost satisfiable”, that is, that are
close to some phase transition point. This phenomenon is well-known in automated planning
[5].

Figure 1: Per-instance comparison of different setups. Times are given in seconds

The performance of the incremental setup was much better on average than in case of the
linear setup, and a little worse than in case of the minimization setup, but still comparable. A

5This means that we can improve our results by carefully examining the knowledge needed for solving the
unsolved problems, and incorporating that knowledge into our model. However, such enrichment of the model
enlarges the search space and makes the solving slower even for the problems that are already solvable by our
model.

8



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

more detailed, per-instance comparison is shown in Figure 1. We can see that the incremental
setup was uniformly better than linear setup, and was also better than the minimization setup
on easier instances, but it was outperformed by the minimization setup on harder problems.
Overall, the incremental setup seems as a good choice in a realistic context, when we do not
know in advance the value of maxSteps parameter.

Figure 2: Survival plot for all three setups, compared to ArgoTriCS. Times are given in seconds

The overall performance of the ArgoTriCS solver was comparable to our approach, when
the average solving time is concerned. However, we may notice that its median solving time
was almost twice greater than in case of our minimization or incremental setup. Also, the
average solving time on solved instances was much better in our approach. This suggests that
our approach performed better than (or comparable to) ArgoTriCS on problems for which it
managed to find a construction plan, especially on easier instances. This is confirmed in Figure
2, which shows the survival plot for all three setups and ArgoTriCS. The minimization setup
was clearly the best, while the linear setup was the worst. When compared to ArgoTriCS,
the incremental setup was cumulatively better on more than 60 instances, which were roughly
all the instances that our model managed to solve. This means that if our model can find a
solution, it can do it fast, while its performance is much worse when it comes to the instances
that are out of its reach (that is, when the corresponding CSPs are unsatisfiable). On the
other hand, the performance of ArgoTriCS had much smaller variance – it performed almost
equally solid on all instances (as it can be seen from Table 1, the average solving time on solved
instances for ArgoTriCS is almost the same as the average solving time on all instances).

The final comparison between ArgoTriCS and our approach concerns the lengths of the
obtained constructions. Table 1 shows that the average plan length in our approach was 6.3
(again, this does not depend on the chosen setup). On the other hand, the average number of
steps in ArgoTriCS’s constructions was 7.5. Notice that these numbers are comparable, since
the sets of available construction steps in both systems are almost identical. A more detailed,
per-instance comparison is shown in Figure 3. The plot clearly confirms that our approach is
by far superior when finding the shortest constructions is concerned. However, for the sake of
fairness, we must stress that ArgoTriCS was not designed with that optimization in mind, that
is, it does not even search for the shortest solutions. We guess that such a capability could
be integrated in ArgoTriCS, but with much more effort, since it would have to be manually
implemented in Prolog (just like the search itself). On the other hand, in our approach, we

9



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

Figure 3: A per-instance comparison of construction (plan) lengths between ArgoTriCS and
our approach

rely on the built-in capabilities of constraint solvers to solve optimization problems efficiently,
imposing the minimal possible effort on our side.

5 Conclusions and Further Work

In this paper we presented and evaluated a method for automated triangle construction based
on constraint solving. We compared our method to the state-of-the-art dedicated triangle
construction solver ArgoTriCS, developed in Prolog programming language. We advocate that
our approach has two important advantages. First, our approach is much simpler to implement,
since we rely on powerful constraint solvers which can efficiently do the search for us, and we may
focus only on modeling. On the other side, in the ArgoTriCS solver the search is implemented
by hand, in more than 500 lines of code. Second, we can easily employ the optimization
capabilities of modern constraint solvers to search for the shortest possible constructions, while
implementing such functionality in ArgoTriCS would require much more effort.

We evaluated our approach on 74 solvable problems from the Wernick’s list. The results
showed that our approach is comparable to ArgoTriCS when solving time is concerned. On the
other hand, our model often finds shorter constructions, due to built-in optimization capability
which is missing in ArgoTriCS.

For further work, we plan to extend our model to support construction problems from other
sets. This should not be a hard task in the technical sense, since the model is developed such
that it can be easily extended (that is, we can easily add new objects, relations and construction
step types). The real challenge is to recognize and integrate the geometric knowledge needed
for such constructions into the model. Of course, this is a job for geometricians, and our goal
was to provide them with (what we hope is) a useful tool that can free them from the tedious
task of programming, and let them focus on what they do the best and love the most.

10



Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers Milan Banković

Acknowledgements. This work was partially supported by the Serbian Ministry of Science
grant 174021. We are very grateful to the anonymous reviewers whose insightful comments and
remarks helped us to make this paper much better.

References

[1] Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial Intel-
ligence, 69(1-2):165–204, 1994.

[2] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice. Elsevier,
2004.

[3] Vesna Marinković. ArgoTriCS–automated triangle construction solver. Journal of Experimental &
Theoretical Artificial Intelligence, 29(2):247–271, 2017.

[4] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and Guido
Tack. MiniZinc: Towards a standard CP modelling language. In Principles and Practice of Con-
straint Programming–CP 2007: 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007. Proceedings 13, pages 529–543. Springer, 2007.

[5] Jussi Rintanen. Planning and SAT. Handbook of Satisfiability, 185:483–504, 2009.

[6] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Elsevier,
2006.

[7] William Wernick. Triangle constructions with three located points. Mathematics Magazine,
55(4):227–230, 1982.

11


	1 Introduction
	2 Background
	2.1 Ruler-and-Compass Constructions
	2.2 Constraint solving
	2.3 Automated planning

	3 Model Description
	3.1 Encoding of geometric knowledge
	3.2 Encoding of the planning problem

	4 Evaluation
	5 Conclusions and Further Work
	References

