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Abstract

An induced subgraph of a graph G is said to be dominating if every vertex of G is
at distance at most one from this subgraph. We investigate pairs (G,F ) where F is a
nonsingular dominating induced subgraph of G, and the rank of G (that is, the rank of
its adjacency matrix) attains the minimum, i.e., equals the number of vertices in F . It
turns out that the inverse of the adjacency matrix of a nonsingular path, half graph, or
even cycle is the adjacency matrix of a related signed graph; here, a half graph refers to
a connected chain graph with exactly one vertex in each cell. We exploit this property
to give a complete characterization of graphs G paired with any of these graphs in the
role of F . The bipartite case is singled out. It occurs that every nonsingular F is paired
with an infinite family of graphs G, and their number is comparatively large even if we
exclude the existence of the so-called twin vertices. The latter empirical observation is
demonstrated through some examples.

1 Introduction

We consider finite undirected graphs without loops or multiple edges. Simultaneously, we
deal with signed graphs, a generalization in which every edge is declared positive or negative.
The number of vertices of a graph G = (V,E) is called the order. By the eigenvalues, the
spectrum and the rank rank(G) of G, we mean the eigenvalues, the spectrum and the rank
of its {0, 1}-adjacency matrix AG. The adjacency matrix of a signed graph is obtained by
reversing the sign of every entry that corresponds to a negative edge.

A graph G is singular if its adjacency matrix is singular. An induced subgraph, say H,
of G is called dominating if every vertex of G is in H or has a neighbor in H. In other
words, H is dominating if and only if every vertex of G is at distance at most 1 from H.
Non-adjacent vertices that share the same set of neighbors are called twins.
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We know from [6, Theorem 5.1.6] that every graph G of rank k contains a nonsingular
induced subgraph of order k. Moreover, if G is connected, then there is a connected
dominating induced subgraph with the same property. This establishes a method to study
the rank of graphs by considering fixed nonsingular dominating induced subgraphs and their
interplay with the remaining vertices. In particular, characterization of graphs with fixed
rank can be considered in this way.

The path and the cycle of order n are denoted by Pn and Cn, respectively. A half
graph H2n is a bipartite graph with color classes {u1, u2, . . . , un} and {v1, v2, . . . , vn}, such
that a vertex ui is adjacent to vertices v1, v2, . . . , vn+i−1, for 1 ≤ i ≤ n. The reader may
recognize that half graphs are a particular subclass of the so-called chain graphs.

One may verify that every set of k (k ≥ 2) twin vertices gives rise to the eigenvalue 0
with multiplicity k− 1. This means that every nonsingular graph of order n is a dominating
induced subgraph in an infinite family of graphs with rank n; it is sufficient to add twin
vertices, one-by-one. If we exclude twin vertices, then the number of resulting graphs is
finite (see [6, Proposition 5.1.4]), but often comparatively large as we demonstrate in few
examples.

We mention that all graphs with rank at most 9 are characterized in series of publications
[7, 8, 14, 15, 19]. Another characterization of graphs with rank at most 5 is given in [3, 4].
In contrast to these references, we do not fix the rank, but fix the structure of a maximal
nonsingular dominating subgraph. Precisely, we consider P2n, C4n+2 or H2n in the role of
such a subgraph, where the specified orders guarantee the nonsingularity. The motivation
lies in the fact the inverse of the corresponding adjacency matrix is the adjacency matrix of
a fixed related signed graph. We exploit this result to offer a characterization of graphs that
contain any of these graphs as a dominating induced subgraph and have the minimum rank.
The bipartite case is resolved, as well.

Considering more related results, we point out that a maximal order of connected twin-
free graphs with given rank has been studied in [9, 10, 13]. Many other results relate the
rank to particular graph invariants or compute the rank of graphs belonging to specified
structural classes; some of them can be found in [5, 11, 12, 16] and references therein.

Additional terminology and notation are given in the forthcoming text. For notation or
terminology not explained here, we refer the reader to any of [6, 17]. Our results are reported
in Section 2. Some constructions are presented in Section 3.

2 Results

We quote the following result, known as the Reconstruction Theorem.

Theorem 2.1 ([6, Theorem 5.1.7]). Let X be a set of k vertices in a graph G and suppose
that G has adjacency matrix

AG =

(
AX B⊺

B C

)
,

where AX is the adjacency matrix of the subgraph induced by X. Then X is a star set for µ
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in G if and only if µ is not an eigenvalue of G−X and

µI − AX = B⊺(µI − C)−1B. (2.1)

With the notation of Theorem 2.1, let F ∼= G − X (where ∼= designates isomorphic
graphs). It is clear that F is a subgraph of G induced by X = V (G)\X, with |X| = n−k and
AF = C. For u ∈ X, denote by bu the vector-column of B corresponding to u. Evidently, bu

is the characteristic vector of the F -neighborhood NF (u) of u. In light of (2.1), we define the
bilinear form on Rn−k by ⟨x,y⟩ = x⊺(µI−C)−1y. Equating the entries in the same identity,
we arrive at

⟨bu,bv⟩ =


µ if u = v,

−1 if u ∼ v,
0 otherwise.

(2.2)

Theorem 2.1 tells us that if F is an induced subgraph of a graph G with the invertible
adjacency matrix C, then the rank of G is |V (F )| if and only if the adjacency matrix AG is as
in this theorem. In other words, the columns of B satisfy (2.2). To say more in this regard,
we need more information about F , and in what follows we consider the three possibilities:
when F is an even path, an even chain graph or a cycle with 4n+ 2 vertices. Each of them
is nonsingular.

We start with a path in the role of a dominating induced subgraph.

Theorem 2.2. Assume that the path P2n is a dominating induced subgraph in a graph G,
and let its vertices be labeled by 1, 2, . . . , 2n in the natural order. Then rank(G) ≥ 2n with
equality if and only if

(i) for every vertex u ∈ V (G) \ V (P2n), the P2n-neighborhood NP (u) consists of vertices
satisfying

|{i, j : i odd, i < j, j − i ≡ 1 (mod 4)}| = |{i, j : i odd, i < j, j − i ≡ 3 (mod 4)}|

and

(ii) for every pair u, v ∈ V (G) \ V (P2n) and every pair i, j such that either i ∈ NP (u), j ∈
NP (v) or i ∈ NP (v), j ∈ NP (u), it holds

|{i, j : i odd, i < j, j−i ≡ 1 (mod 4)}|−|{i, j : i odd, i < j, j−i ≡ 3 (mod 4)}| ∈ {0, 1},

with u ≁ v if and only if the previous difference is 0.

Proof. Since rank(P2n) = 2n, we have rank(G) ≥ 2n. We proceed with the equality case. By
Theorem 2.1, rank(G) = 2n if and only if the equality (2.2) holds for u, v ∈ V (G) \ V (P2n),
with µ = 0 and C = AP2n .

We proceed to determine the inverse of AP2n . If the vertices of P2n are labelled in the
natural order, then the (i, j)-entry of its adjacency matrix is 1 if and only if |i− j| = 1. We
claim that the (i, j)-entry of the inverse is nonzero if and only if both i− j and min{i, j} are
≡ 1 (mod 2), along with

(i, j) =

{
1 if |i− j| ≡ 1 (mod 4),

−1 otherwise.
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Figure 1: The signed half graph for the proof of Theorem 2.2. Negative edges are dashed.

This is not complicated to verify, as a row of AP2n and a column of the second matrix match
in at most two nonzero places, along with the desired conclusion. Accordingly, the inverse
of −AP2n appears to be the adjacency matrix of a signed half graph, say Σ, illustrated in
Figure 1, where the vertex labeling is inherited from P2n.

Now, ⟨bu,bu⟩ = b⊺
uAΣbu = 0 holds if and only if the number of positive edges in the

subgraph of Σ induced by NP (u) is equal to the number of negative edges in the same
subgraph. We first observe that there is an edge between the vertices i and j if and only if
the smaller of them is odd and the other is even (see the figure). The next observation is
that the corresponding edge is positive if and only if j − i ≡ 3 (mod 4), which gives (i).

Next, ⟨bu,bv⟩ = 0 holds if and only if the number of positive edges located between
NP (u) and NP (v) in Σ is equal to the number of negative edges located between the same
vertex sets, i.e., if and only if the difference of item (ii) is zero. Similarly, ⟨bu,bv⟩ = −1 if and
only if the same difference is 1 (i.e., the number of positive edges is the number of negative
edges minus 1). In addition, in the former (resp. latter) case u and v are non-adjacent
(adjacent). This completes (ii) and the entire proof.

In the previous proof, we gave an explicit construction of A−1
P2n

. In this context, it is
worth mentioning that the inverse of the adjacency matrix of a nonsingular tree is obtained
in [2, Theorem 3.33], which is an alternative way to arrive at the same result. Our approach
emphasizes the related signed graph which is significant for development of the paper. We
proceed with the following consequence.

Corollary 2.3. Assume that the path P2n+1 is a dominating induced subgraph in a graph G,
and let its vertices be labeled by 1, 2, . . . , 2n + 1 in the natural order. Then rank(G) ≥ 2n
with equality if and only if the subpath P2n obtained by deleting the vertex 2n + 1 satisfies
(i) and (ii) of Theorem 2.2 and for every vertex u ∈ V (G) \ V (P2n+1) its P2n-neighborhood
consists of vertices satisfying

|{i : 2n− i ≡ 1 (mod 4)}| − |{i : 2n− i ≡ 3 (mod 4)}| ∈ {0, 1},

with u ≁ 2n+ 1 if and only if the previous difference is 0.

Proof. Since rank(P2n+1) = 2n, we infer that rank(G) ≥ 2n. The equality case is considered
as in the proof of Theorem 2.2 with P2n in the role of a dominating path, along with an
additional assumption that G contains a vertex adjacent to an endvertex of this path, in the
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Figure 2: The signed path for the proof of Theorem 2.4.

formulation of this corollary labeled by 2n + 1. Indeed, P2n also dominates G, otherwise G
would contain P2n+2 (with rank 2n+2) as an induced subgraph which implies rank(G) > 2n.
The remaining assumption of the corollary arises from ⟨bu,b2n+1⟩ ∈ {0,−1}.

The next instance is a half graph.

Theorem 2.4. Assume that the half graph H2n is a dominating induced subgraph in a
graph G, and let its vertices be labelled as in Figure 1. Then rank(G) ≥ 2n with equality if
and only if

(i) for every vertex u ∈ V (G) \ V (H2n), the H2n-neighborhood NH(u) consists of vertices
satisfying

|{i, j : i− j = 1, i odd}| = |{i, j : i− j = 1, i even}|

and

(ii) for every pair u, v ∈ V (G) \ V (H2n) and every pair i, j such that either i ∈ NH(u), j ∈
NH(v) or i ∈ NH(v), j ∈ NH(u), it holds

|{i, j : i− j = 1, i odd}| − |{i, j : i− j = 1, i even}| ∈ {0, 1},

with u ≁ v if and only if the previous difference is 0.

Proof. The adjacency matrix AH2n is nonsingular, see [1]. Accordingly, rank(G) ≥ 2n.
For the equality case, we exploit the idea of the proof of Theorem 2.2. The matrix −A−1

H2n

is the adjacency matrix of the signed path illustrated in Figure 2; to see this one may follow
the corresponding part of the proof of Theorem 2.2. Accordingly, ⟨bu,bu⟩ = 0 holds if and
only if the number of positive edges and the number of negative edges in the signed graph
induced by NH(u) are equal, i.e., if and only if item (i) holds.

Comparing the numbers of positive and negative edges between NH(u) and NH(v), we
arrive at (ii), and the proof is complete.

And the next station is a cycle.

Theorem 2.5. Assume that the cycle C4n+2 is a dominating induced subgraph in a graph G,
and let its vertices be labeled by 1, 2, . . . , 4n+2 in the natural order. Then rank(G) ≥ 4n+2
with equality if and only if

(i) for every vertex u ∈ V (G) \ V (H2n), the C4n+2-neighborhood NC(u) consists of vertices
satisfying

|{i, j : |i− j| ≡ 1 (mod 4)}| = |{i, j : |i− j| ≡ 3 (mod 4)}|

and
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Figure 3: The signed complete bipartite for the proof of Theorem 2.5.

(ii) for every pair u, v ∈ V (G) \ V (C4n+2) and every pair i, j such that either i ∈ NC(u), j ∈
NC(v) or i ∈ NC(v), j ∈ NC(u), it holds

|{i, j : |i− j| ≡ 1 (mod 4)}| − |{i, j : |i− j| ≡ 3 (mod 4)}| ∈ {0, 2},

with u ≁ v if and only if the previous difference is 0.

Proof. The lower bound for the rank is evident, and we consider the equality case. By direct
multiplication one may confirm that −A−1

C4n+2
is given by

(i, j) =


−1/2 if |i− j| ≡ 1 (mod 4),
1/2 if |i− j| ≡ 3 (mod 4),
0 otherwise.

In other words, this matrix is equal to 1
2
AΣ, where Σ is the signed complete bipartite

graph of Figure 3. The remainder of the proof is a slight modification of the proof of
Theorem 2.2.

Cycles with 4n vertices are singular, and 0 appears in their spectra with multiplicity 2.
However, each contain an induced path P4n−2, and thus graphs G containing C4n as a
dominating induced subgraph and having rank 4n−2 are obtained by following Corollary 2.3.

We consider the bipartite case.

Theorem 2.6. Let G be a graph containing a dominating induced subgraph F , where F is
a graph of either Theorem 2.2, or 2.4, or 2.5. Then G is bipartite with rank(G) = |V (F )| if
and only if

(a) the subgraph induced by V (G) \ V (F ) is edgeless,

(b) for every u ∈ V (G) \ V (F ) its F -neighborhood NF (u) belong to exactly one color class
of F and

(c) for every v ∈ V (G) \ V (F ) such that F -neighbors of u and v are in distinct color
classes, the set NF (u) ∪NF (v) consist of vertices satisfying the equality of item (i) of
the corresponding theorem.
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Proof. Assume first that G is bipartite with rank(G) = |V (F )|.
Since F is bipartite, every u ∈ V (G) \ V (F ) is adjacent to vertices belonging to exactly

one color class of F , which gives (b).
Let v be as in item (c) of this statement. Then the difference of item (ii) of the theorem

treating a specified graph F (i.e., one of Theorems 2.2, 2.4 or 2.5) is zero. Moreover, this
difference reduces to the equality of item (i) of the same theorem since NF (u) ∩NF (v) = ∅
and |i− j| is even for every pair i, j belonging to one of NF (u) or NF (v). This proves (c).

Suppose that there is an edge between u, v ∈ V (G) \V (F ). This means that u and v are
in distinct color classes of G, and then |i − j| is even for every pair i ∈ NF (u), j ∈ NF (v),
meaning that the difference in (ii) of the corresponding theorem is zero (in fact, both minuend
and subtrahend are zero), which contradicts the existence of an edge between u and v.
Hence, (a) holds.

Assume now that all three items of the statement of this theorem hold. First, G is
bipartite since F is bipartite, the subgraph induced by V (G) \V (F ) is edgeless (by (a)) and
its vertices are dispersed into color classes according to (b).

It remains to consider the rank of G. Item (i) of the corresponding theorem follows
from (b) of this theorem. Item (ii) follows from (a) and (c).

3 Examples

In this section we give some examples that illustrate the previous results.

Example 3.1. Let O (resp. E) denote a subset containing odd (even) vertices of the path P2n

such that u > v holds for every pair u ∈ O, v ∈ E. If every u ∈ V (G)\V (P2n) is adjacent only
to vertices of O∪E and the graph induced by V (G)\V (P2n) is edgeless, then rank(G) = 2n.

Indeed, items (i) and (ii) of Theorem 2.2 hold trivially (as they reduce to 0 = 0 and 0−0,
respectively).

Bipartite examples are easily constructed on the basis of Theorem 2.6. For instance, by
choosing G without vertices of item (c) will do. In other cases, the same item establishes a
crucial condition.

We rather proceed with the following concept. If F is a nonsingular graph, then there
is an infinite family of graphs containing F as a dominating induced subgraph and having
rank |V (F )|. To see this, it is sufficient to observe that in this case X of Theorem 2.1 may
contain an arbitrary number of twins. However, if we restrict ourselves to twin-free graphs,
then for every F there is a finite number of them (as noted in the opening section), and the
results of the previous section give their structure for particular choices of F . We say that
a twin-free graph G with the previous properties is maximal if a vertex can be added to X
only if this vertex is a twin to some existing vertex. Such graph G can be seen as a maximal
twin-free extension of F . Clearly, maximal twin-free extensions are of particular interest as
every other twin-free extension is an induced subgraph of a maximal one. In other words,
once we have obtained maximal twin-free extensions, we have all twin-free extensions.
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Figure 4: Maximal twin-free extensions of P4.

Example 3.2. The Star Complement Library (SCL) software was developed to support
constructions of graphs of Theorem 2.1 when F and µ are given [18]. In particular, for µ = 0
it results in maximal twin-free extensions, so it is exactly what we need here.

It is not difficult to see that there are exactly two maximal twin-free extensions of P4

illustrated in Figure 4; their spectra are 2.56, 1, 02,−1.56,−2 and 3, 1, 02, (−2)2. The path P6

counts 11 maximal twin-free extensions having between 12 and 14 vertices, not listed here.
For P8 this number is 1639, and the extensions have between 18 and 30 vertices.

The half graph H8 has 1756 maximal extensions, again with between 18 and 30 vertices.
Finally, C6 has exactly 2 maximal extensions. If their adjacency matrices are as in

Theorem 2.1, then the submatrices (AX B⊺) are



0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 1 1 0 1 0 1 0
0 0 1 1 1 0 1 0 0 1 1 0 1
1 0 1 0 1 1 0 0 1 0 0 1 1


and



0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 1 1 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1 0 1 1 0
0 1 0 0 1 0 0 1 1 1 0 1 1 0
0 0 0 1 1 1 1 0 1 0 0 1 0 1


.

The spectra are 5.24, 1.792, 07, (−2.79)2,−3.24 and 5.68, 2, 1.70, 08,−2.25,−3.13,−4, respectively.
To give an insight in complexity of these results, we mention that for C10 there exist 317

vertices with distinct C10-neighborhoods satisfying item (i) of Theorem 2.5.
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